skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ma, Kaisheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. There is growing interest in deploying energy harvesting processors and accelerators in Internet of Things (IoT). Energy harvesting harnesses the energy scavenged from the environment to power a system. Although it has many advantages over battery-operated systems such as lightweight, compact size, and no necessity of recharging and maintenance, it may suffer frequently power-down and a fluctuating power supply even with power on. Non-volatile processor (NVP) is a promising architecture for effective computing in energy harvesting scenarios. Recently, non-volatile accelerators (NVA) have been proposed to perform computations of deep learning algorithms. In this paper, we overview the recent studies of NVP and NVA across the layers of hardware, architecture, software and their co-design. Especially, we present the design insights of how the state-of-the-art works adapt their specific designs to the intermittent and fluctuating power conditions with the energy harvesting technology. Finally, we discuss recent trends using NVP and NVA in energy harvesting scenarios. 
    more » « less
  2. null (Ed.)